Some Decomposition of Normal Projective Curvature Tensor II

${ }^{1}$ Fahmi Yaseen Abdo Qasem, ${ }^{2}$ Abdalstar Ali Mohsen Saleem
Dept. of Math., Faculty of Education-Aden, University of Aden, Khormakssar, Aden., Yemen

Abstract

In the present paper, a Finsler space $\boldsymbol{F}_{\boldsymbol{n}}$ for which the normal projective curvature tensor $\boldsymbol{N}_{\boldsymbol{j} k \boldsymbol{h}}^{\boldsymbol{i}}$ satisfies $\boldsymbol{N}_{j k h}^{i}=\boldsymbol{y}^{i} \boldsymbol{Y}_{\boldsymbol{j k h}}$, where $\boldsymbol{Y}_{\boldsymbol{j k h}}$ is non-zero tensor field called decomposition tensor field, we discuss decompose the normal projective curvature tensor in recurrent Finsler space.

Keywords: a Finsler space, decompositions tensor in recurrent Finsler space.

1. INTRODUCTION

K. Takano [8] discussed recurrent affine motion in a recurrent non-Riemannian space and later on he discussed a recurrent whose curvature tensor is decomposable. Ram Hit [6], B. B. Sinha and S. P. Singh [7], H. D. Pande and H. S. Shakla [2] studied a recurrent Finsler space whose curvature tensor is decomposable. H. D. Pande and H. S. Shakla [2] considered a recurrent Finsler space whose curvature tensor is decomposable. P. N. Pandey [3], H. D. Pande and T. A. Khan [1], Prateek Mishra, Kaushal Srivastava, S. B. Mishra [5] dialed with the problem decomposability of curvature tensor, a necessary and sufficient condition for decomposability of curvature tensor has been obtained.

Let us consider a set of quantities $g_{i j}$ defined by

$$
\begin{equation*}
g_{i j}(x, y)=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}(x, y) \tag{1.1}
\end{equation*}
$$

The tensor $g_{i j}(x, y)$ is positively homogeneous of degree zero in y^{i} and symmetric in i and j . According to Euler's theorem on homogeneous functions, the vector y_{i} satisfies the following relation

$$
\begin{equation*}
y_{i} y^{i}=F^{2} \tag{1.2}
\end{equation*}
$$

Berwald covariant derivative of the metric function F and vector y^{i} vanish identically, i.e.
a) $\mathcal{B}_{k} F=0 \quad$ and
b) $\mathcal{B}_{k} y^{i}=0$.

The tensor $H_{j k h}^{i}$ is called h-curvature tensor. It is positively homogeneous of degree zero in y^{i} and skew-symmetric in its last two lower indices which defined by

$$
H_{j k h}^{i}:=\partial_{h} G_{j k}^{i}+G_{j k}^{r} G_{r h}^{i}+G_{r k}^{i} G_{j}^{r}-h / k .
$$

In view of Euler's theorem on homogeneous functions we have the following relations
a) $\dot{\partial}_{j} H_{k h}^{i}=H_{j k h}^{i}$,
b) $y^{r} \dot{\partial}_{r} H_{j k h}^{i}=y^{r} \dot{\partial}_{j} \dot{\partial}_{r} H_{k h}^{i}=0$,
c) $H_{j k h}^{i} y^{j}=H_{k h}^{i}$,
d) $H_{i j k h}:=g_{j r} H_{i k h}^{r}$
e) $H_{k h}^{i}=\dot{\partial}_{k} H_{h}^{i}, \quad$ f) $H_{k h}^{i} y^{k}=H_{h}^{i}$,
g) $H_{j k . h}=g_{i k} H_{j h}^{i}$,
h) $H_{j k}=H_{j k r}^{r}$,
i) $H_{r k h}^{r}=H_{k h}-H_{h k}$,
l) $H_{k}=H_{k r}^{r}$,
m) $H=\frac{1}{n-1} H_{r}^{r}$ and
n) $H_{k} y^{k}=H$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

2. NORMAL PROJECTIVE CURVATURE TENSOR

K. Yano [9] defined the normal projective connection by $\Pi_{j k}^{i}=G_{j k}^{i}-\frac{1}{n+1} y^{i} G_{j k r}^{r}$.

The connection coefficients $\Pi_{j k}^{i}$ is positively homogeneous of degree zero in y^{i} 's and symmetric in their lower indices. The covariant derivative $\mathcal{B}_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} in the sense of Berwald is given by

$$
\begin{equation*}
\text { a) } \mathcal{B}_{k} T_{j}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) \Pi_{k s}^{r} y^{s}+T_{j}^{r} \Pi_{k r}^{i}-T_{r}^{i} \Pi_{k j}^{r} \text {. } \tag{2.1}
\end{equation*}
$$

The commutation formula for the above covariant derivative is given by

$$
\text { b) } \mathcal{B}_{k} \mathcal{B}_{h} T_{j}^{i}-\mathcal{B}_{h} \mathcal{B}_{k} T_{j}^{i}=T_{j}^{r} \mathrm{~N}_{r k h}^{i}-T_{r}^{i} \mathrm{~N}_{j k h}^{r}-\dot{\partial}_{r} T_{j}^{i} \mathrm{~N}_{s k h}^{r} y^{s} \text {. }
$$

P.N. Pandey [4] obtained a relation between the normal projective curvature tensor $N_{j k h}^{i}$ and Berwald curvature tenser $H_{j k h}^{i}$ as follows:

$$
\begin{equation*}
N_{j k h}^{i}=H_{j k h}^{i}-\frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{r k h}^{r} . \tag{2.2}
\end{equation*}
$$

The normal projective curvature tensor $N_{j k h}^{i}$ is homogeneous of degree zero in y^{i}. For the tensor $N_{j k h}^{i}$ we have the identities
a) $N_{r k h}^{r}=H_{r k h}^{r}$,
b) $N_{j k h}^{i} y^{j}=H_{k h}^{i}$,
c) $N_{j k h}^{i}=-N_{j h k}^{i}$,
d) $N_{j k h}^{i}+N_{k h j}^{i}+N_{k j h}^{i}=0 \quad$ and $\left.\quad e\right) N_{j k}=N_{j k r}^{r}$.

3. DECOMPOSITION OF NORMAL PROJECTIVE CURVATURE TENSOR IN FINSLER SPACE

Let us consider the decomposition of the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is of the type $(1,3)$ as follows :

$$
\begin{equation*}
N_{j k h}^{i}=y^{i} Y_{j \boldsymbol{k} \boldsymbol{h}} \tag{3.1}
\end{equation*}
$$

where $Y_{j k h}$ is non-zero tensor filed called decomposition tensor field.
Further considering the decomposition of the tensor field (3.1) in the form

$$
\begin{equation*}
\text { a) } N_{j k h}^{i}=y^{i} y_{j} Y_{k h} \quad \text { or } \quad \text { b) } N_{j k h}^{i}=y^{i} y_{h} Y_{j k} \text {. } \tag{3.2}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
y^{j} \lambda_{j}=\sigma, \tag{3.3}
\end{equation*}
$$

such λ_{j} as recurrence vector and σ is decomposition scalar.
In view of (3.1), the identities (2.3c) and (2.3d), can be written as

$$
\begin{equation*}
\text { a) } Y_{j k h}+Y_{j h k}=0 \quad \text { and } \quad \text { b) } Y_{j k h}+Y_{k h j}+Y_{h j k}=0 \tag{3.4}
\end{equation*}
$$

In view of (2.3a), the contraction of the indices i and j in (3.1) gives

$$
\begin{equation*}
H_{r k h}^{r}=y^{r} Y_{r k h} . \tag{3.5}
\end{equation*}
$$

Using (1.4i) in (3.5), we get

$$
\begin{equation*}
Y_{r k h}=\frac{1}{y^{r}}\left(H_{h k}-H_{k h}\right) . \tag{3.6}
\end{equation*}
$$

In view of (3.1), equ. (3.6) can be written as

$$
\begin{equation*}
N_{j k h}^{i}=\frac{y^{i}}{y^{j}}\left(H_{h k}-H_{k h}\right) . \tag{3.7}
\end{equation*}
$$

Transecting (3.7) by y^{j} and using (2.3b), we get

$$
\begin{equation*}
H_{k h}^{i}=y^{i}\left(H_{h k}-H_{k h}\right) \tag{3.8}
\end{equation*}
$$

Thus, we conclude

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (131-136), Month: October 2015 - March 2016, Available at: www.researchpublish.com

Theorem 3.1. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.1), then the normal projective curvature tensor $N_{j k h}^{i}$ and the $h(v)$ - torsion tensor $H_{k h}^{i}$ are defined by (3.7) and (3.8) respectively, the tensor $H_{r k h}^{r}$ is decomposable in the form (3.5) and the decomposable tensor field $Y_{j k h}$ satisfies (3.6).

Contraction of the indices i and j in (3.2a), using (2.3a) and (1.2), we get

$$
\begin{equation*}
H_{r k h}^{r}=F^{2} Y_{k h} \tag{3.9}
\end{equation*}
$$

Using (1.4i) in (3.9), we get

$$
\begin{equation*}
Y_{k h}=\frac{1}{F^{2}}\left(H_{h k}-H_{k h}\right) . \tag{3.10}
\end{equation*}
$$

In view of (3.2a), equ. (3.10) can be written as

$$
\begin{equation*}
N_{j k h}^{i}=y^{i} y_{j} \frac{1}{F^{2}}\left(H_{h k}-H_{k h}\right) . \tag{3.11}
\end{equation*}
$$

Transecting (3.11) by y^{j} and using (2.3b), we get

$$
\begin{equation*}
H_{k h}^{i}=y^{i}\left(H_{h k}-H_{k h}\right) \tag{3.12}
\end{equation*}
$$

Thus, we conclude
Theorem 3.2. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.2a), then the normal projective curvature tensor $N_{j k h}^{i}$ and the $h(v)$ - torsion tensor $H_{k h}^{i}$ are defined by (3.11) and (3.12) respectively, the tensor $H_{r k h}^{r}$ is decomposable in the form (3.9) and the decomposable tensor field $Y_{k h}$ satisfies (3.10).

4. DECOMPOSITION OF NORMAL PROJECTIVE CURVATURE TENSOR $N_{j k h}^{i}$ in NPR- F_{n}

P. N. Pandey [4] discussed a Finsler space F_{n} for which the normal projective curvature tensor $N_{j k h}^{i}$ satisfies the recurrence property with respect to Berwald's connection coefficients and called it NPR-Finsler space. Thus, NPR-Finsler space is characterized by

$$
\begin{equation*}
\mathcal{B}_{m} N_{j k h}^{i}=\lambda_{m} N_{j k h}^{i}, \quad N_{j k h}^{i} \neq 0, \tag{4.1}
\end{equation*}
$$

where λ_{m} non-zero covariant vector field is recurrence vector field .
Note 4.1. In this paper, we shall denote such space briefly by $N P R-\mathrm{F}_{n}$.
Let us consider a Finsler space whose normal projective curvature tensor $N_{j k h}^{i}$ satisfies the condition (4.1).
Transvecting (4.1) by y^{j}, using (1.3b) and (2.3b), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{k h}^{i}=\lambda_{m} H_{k h}^{i} \tag{4.2}
\end{equation*}
$$

Contraction of the indices i and j in (4.1) and using (2.3a), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{r k h}^{r}=\lambda_{m} H_{r k h}^{r} \tag{4.3}
\end{equation*}
$$

Transvecting (4.2) by y^{k}, using(1.3b) and (1.4f), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{h}^{i}=\lambda_{m} H_{h}^{i} . \tag{4.4}
\end{equation*}
$$

Contraction of the indices i and h in (4.2) using (1.41), we get

$$
\begin{equation*}
B_{m} H_{k}=\lambda_{m} H_{k} . \tag{4.5}
\end{equation*}
$$

Transvecting (4.5) by y^{k}, using (1.3b) and (1.4n), we get

$$
\begin{equation*}
B_{m} H=\lambda_{m} H . \tag{4.6}
\end{equation*}
$$

We know that the normal projective curvature tensor $N_{j k h}^{i}$ satisfies the following:

$$
\begin{equation*}
\lambda_{m} N_{j k h}^{i}+\lambda_{k} N_{j h m}^{i}+\lambda_{h} N_{j m k}^{i}=0 . \tag{4.7}
\end{equation*}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (131-136), Month: October 2015 - March 2016, Available at: www.researchpublish.com

Differentiating (3.1) covariantly with respect to x^{m} in the sense of Berwald, using (4.1), (3.1) and (1.3b), we get

$$
\begin{equation*}
\mathcal{B}_{m} Y_{j k \mathrm{~h}}=\lambda_{m} Y_{j k \mathrm{~h}} \tag{4.8}
\end{equation*}
$$

where λ_{m} is non-zero vector filed.
Thus, we conclude
Theorem 4.1. In an $N P R-F_{n}$, under the decomposition (3.1), the decomposition tensor field $Y_{j k \mathrm{~h}}$ behaves like a recurrent tensor field.

Differentiating (4.8) covariantly with respect to x^{l} in the sense of Berwald and using (4.8), we get

$$
\begin{equation*}
\mathcal{B}_{l} \mathcal{B}_{m} Y_{j k \mathrm{~h}}=\left(\mathcal{B}_{l} \lambda_{m}\right) Y_{j k \mathrm{~h}}+\lambda_{m} \lambda_{l} Y_{j k \mathrm{~h}} \tag{4.9}
\end{equation*}
$$

Interchanging the indices m and l in (4.9) and subtracting the equation obtained from (4.9), we get

$$
\begin{equation*}
\mathcal{B}_{l} \mathcal{B}_{m} Y_{j k h}-\mathcal{B}_{m} \mathcal{B}_{l} Y_{j k h}=\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right) Y_{j k h} \tag{4.10}
\end{equation*}
$$

Using the commutation formula (2.1b) in (4.10), we get

$$
\begin{equation*}
\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right) Y_{j k h}=-\left(Y_{r k h} N_{j m l}^{r}+Y_{j r h} N_{k m l}^{r}+Y_{j k r} N_{h m l}^{r}+\dot{\partial}_{r} Y_{j k h} N_{s m l}^{r} y^{s}\right) \tag{4.11}
\end{equation*}
$$

In view of (3.1) and the homogeneity property of $Y_{j k h}$, equ. (4.11) can be written as

$$
\begin{equation*}
\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right) Y_{j k h}=-\left(Y_{r k h} Y_{j m l}+Y_{j r h} Y_{k m l}+Y_{j k r} Y_{h m l}-Y_{j k h} Y_{r m l}\right) y^{r} \tag{4.12}
\end{equation*}
$$

Differentiating (4.12) covariantly with respect to x^{n} in the sense of Berwald, using (4.8), (1.3b) and (4.12), we get

$$
\begin{equation*}
\mathcal{B}_{n}\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right)=\lambda_{n}\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right) \tag{4.13}
\end{equation*}
$$

Thus, we conclude
Theorem 4.2. In an NPR- F_{n}, the recurrence $\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}$ behaves like a recurrent tensor field under the decomposition (3.1).

Further considering the decomposition of the tensor field $Y_{j k h}$ in the form

$$
\begin{equation*}
Y_{j k h}=\lambda_{j} Y_{k h} . \tag{4.14}
\end{equation*}
$$

Differentiating (4.14) covariantly with respect to x^{m} in the sense of Berwald, using (4.8) and (4.14), we get

$$
\begin{equation*}
\lambda_{m} \lambda_{j} Y_{k h}=\left(\mathcal{B}_{m} \lambda_{j}\right) Y_{k h}+\lambda_{j} \mathcal{B}_{m} Y_{k h} \tag{4.15}
\end{equation*}
$$

Transvecting (4.15) by y^{j}, using (3.3) and (1.3a), we get

$$
\begin{equation*}
\mathcal{B}_{m} Y_{k h}=\lambda_{m} Y_{k h} \tag{4.16}
\end{equation*}
$$

Thus, we conclude
Theorem 4.3. In an $N P R-F_{n}$, under the decomposition (3.1) and (4.14), the tensor field $Y_{k h}$ behaves like a recurrent tensor field.

From (4.12) and (4.14), we get

$$
\begin{equation*}
\lambda_{j}\left\{\left(\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}\right) Y_{k h}-Y_{m l}\left(\lambda_{k} Y_{r h}+\lambda_{h} Y_{k r}\right) y^{r}\right\}=0 . \tag{4.17}
\end{equation*}
$$

Using (4.14) in (3.4b), we get
(4.18) $\quad-\lambda_{j} Y_{k h}=\lambda_{k} Y_{h j}+\lambda_{h} Y_{j k}$.

From (4.17), (4.18), using (3.3), the fact that the vector filed λ_{m} and the tensor field $Y_{j k h}$ are non-zero, we get

$$
\begin{equation*}
\mathcal{B}_{l} \lambda_{m}-\mathcal{B}_{m} \lambda_{l}+\sigma Y_{m l}=0 \tag{4.19}
\end{equation*}
$$

Thus, we conclude

Theorem 4.4. In an NPR- F_{n}, under the decomposition (3.1) and (4.19), the necessary and sufficient condition that $\mathcal{B}_{l} \lambda_{m}=\mathcal{B}_{m} \lambda_{l}$ is that $\sigma=0$.

Using (3.1) in (4.7), we get

$$
\begin{equation*}
\lambda_{m} Y_{j k h}+\lambda_{k} Y_{j h m}+\lambda_{h} Y_{j k m}=0 \tag{4.20}
\end{equation*}
$$

In view of (4.20) and (4.14), we get

$$
\begin{equation*}
\lambda_{m} Y_{k h}+\lambda_{k} Y_{h m}+\lambda_{h} Y_{k m}=0 \tag{4.21}
\end{equation*}
$$

Thus, we conclude
Theorem 4.5. In an NPR- F_{n}, under the decomposition (3.1), the decomposition tensor fields $Y_{j k h}$ and $Y_{k h}$ satisfy the identities (4.20) and (4.21), respectively.

Transvecting (3.1) by y^{j}, using (2.3b), (3.3) and (4.14), we get

$$
\begin{equation*}
H_{k h}^{i}=\sigma y^{i} Y_{k h} \tag{4.22}
\end{equation*}
$$

Thus, we conclude
Theorem 4.6. In an $N P R-F_{n}$, under the decompositions (3.1), (3.3) and (4.14), the $h(v)$-torsion tensor $H_{k h}^{i}$ is decomposable in the form (4.22).

Differentiating (4.22) covariantly with respect to x^{m} in the sense of Berwald, using (1.3b), (4.2) and (4.22), we get

$$
\begin{equation*}
y^{i} \mathcal{B}_{m} Y_{k h}=y^{i} \lambda_{m} Y_{k h} \tag{4.23}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\mathcal{B}_{m} Y_{k h}=\lambda_{m} Y_{k h} . \tag{4.24}
\end{equation*}
$$

Thus, we conclude
Theorem 4.7. In an NPR- F_{n}, under the decomposition (4.22), the decomposition tensor field $Y_{k h}$ behaves like a recurrent tensor field .

Contracting of the indices i and m in (4.23), we get

$$
\begin{equation*}
y^{s} \mathcal{B}_{s} Y_{k h}=y^{s} \mathcal{B}_{s} Y_{k h} \tag{4.25}
\end{equation*}
$$

Thus, we conclude
Theorem 4.8. In an NPR- F_{n}, under the decomposition (4.22), the directional derivatives of the decomposition tensor field $Y_{k h}$ in the direction of y^{s} is proportional to $Y_{k h}$.

Contraction of the indices i and h in (4.22) and using (1.41), we get

$$
\begin{equation*}
H_{k}=Y_{k}, \tag{4.26}
\end{equation*}
$$

where $Y_{k i} y^{i}=Y_{k}$.
Differentiating (4.26) covariantly with respect to x^{m} in the sense of Berwald and using (4.5) and (4.26), we get

$$
\begin{equation*}
B_{m} Y_{k}=\lambda_{m} Y_{k} \tag{4.27}
\end{equation*}
$$

Thus, we conclude
Theorem 4.9. In an NPR- F_{n}, under the decomposition (4.26), the decomposition tensor fields Y_{k} behaves like a recurrent tensor field .

Differentiating (4.11) covariantly with respect to x^{l} and x^{n} in the sense of Berwald and using (4.11), we get

$$
\begin{equation*}
B_{n} B_{l} B_{m} Y_{j k h}=\left\{B_{n} B_{l} \lambda_{m}+\lambda_{n}\left(B_{l} \lambda_{m}+\lambda_{m} \lambda_{l}\right)+\lambda_{l} B_{n} \lambda_{m}+\lambda_{m} B_{n} \lambda_{l}\right\} Y_{j k h} . \tag{4.28}
\end{equation*}
$$

Interchanging the indices l and n in (4.28) and subtracting the equation obtained from (4.28), we get

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 2, pp: (131-136), Month: October 2015 - March 2016, Available at: www.researchpublish.com
(4.29) $B_{n} B_{l} B_{m} Y_{j k h}-B_{l} B_{n} B_{m} Y_{j k h}=\left\{\left(B_{n} B_{l} \lambda_{m}-B_{l} B_{n} \lambda_{m}\right)+\lambda_{m}\left(B_{n} \lambda_{l}-B_{l} \lambda_{n}\right)\right\} Y_{j k h}$.

Using the commutation formula (2.1b), (3.1) and (4.8) in (4.29), we get

$$
\begin{equation*}
\lambda_{m}\left(B_{n} \lambda_{l}-B_{l} \lambda_{n}\right) Y_{j k h}=0 \tag{4.30}
\end{equation*}
$$

Cyclically permeation of m, l and n in (4.30), we get

$$
\begin{equation*}
\lambda_{m}\left(B_{n} \lambda_{l}-B_{l} \lambda_{n}\right)+\lambda_{l}\left(B_{m} \lambda_{n}-B_{n} \lambda_{m}\right)+\lambda_{n}\left(B_{m} \lambda_{l}-B_{l} \lambda_{m}\right)=0, \quad \text { where } Y_{j k h} \neq 0 . \tag{4.31}
\end{equation*}
$$

Thus, we conclude
Theorem 4.10. In an NPR- F_{n}, under the decomposition (3.1) the recurrence vector field λ_{l} satisfies relation (4.31).
Using the commutation formula (2.1b), (3.1), (4.14) and (4.8) in (4.29), we get

$$
\begin{equation*}
B_{n} B_{l} B_{m} Y_{j k h}-B_{l} B_{n} B_{m} Y_{j k h}=\left\{\lambda_{m}\left(B_{n} \lambda_{l}-B_{l} \lambda_{n}\right)-\lambda_{r} Y_{m l n} y^{r}\right\} Y_{j k h} . \tag{4.32}
\end{equation*}
$$

Cyclically permeation m, l and n in (4.32), using (4.31) and (3.4b), we get

$$
\begin{equation*}
\left\{B_{l}\left(B_{m} B_{n}-B_{n} B_{m}\right)+B_{m}\left(B_{n} B_{l}-B_{l} B_{n}\right)+B_{n}\left(B_{l} B_{m}-B_{m} B_{l}\right)\right\} Y_{j k h}=0 . \tag{4.33}
\end{equation*}
$$

Thus, we conclude
Theorem 4.11. In an NPR- F_{n}, under the decomposition (3.1) the decomposition tensor field $Y_{j k h}$ satisfies the relation (4.33).

REFERENCES

[1] Pande, H.D. and Khan, T. A.: General Decomposition of Berwald's Curvature Tensor Fields in Recurrent Finsler Spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur., 55, (1973), 680-685.
[2] Pande, H.D. and Shukla, H. S.: On the Decomposition of Curvature Tensor Fields in Recurrent Finsler Spaces, J. of Pure and Applied Maths. Vol. 8, No. 4, (1977), 418-424.
[3] Pandey, P.N.: On Decomposability of Curvature Tensor of Finsler Manifold. Acta. Math. Acad. Sci. Hunger. 38, (1981), 109-116.
[4] Pandey, P.N.: Some Identities in an NPR-Finsler Manifold, J. of Math., (India), Vol. 24, (1982), 135-143.
[5] Prateek Mishra, Kaushal Srivastava and Mishra, S. B.: Decomposition of Curvature Tensor Field $\mathrm{R}_{\mathrm{jkh}}^{++}{ }^{++}(x, y)$ in a Finsler Spaces Equipped With Non-Symmetric Connection, Journal of Chemical, Biological and Physical Sciences. An Int. Peer Review E-3 J. of Sci. Vol.3, No.2, (February 2013-April 2013), 1498-1503.
[6] Ram Hit.: Decomposition of Berwald's Curvature Tensor Fields, Ann. Fac. Sci. (Kinshasa), 1, (1975), 220-226.
[7] Sinha, B. B. and Singh, S. P.: On Decomposition of Recurrent Curvature Tensor Fields in Finsler Spaces, Bull. Cal. Math. Soc. 62, (1970), 91-96.
[8] Takano, K.: Recurrent Affine Motion in S-AK ${ }_{N}^{*}$ Space, Tensor, N.S., 17, (1966), 321-326.
[9] Yano, K.: The Theory of Lie-Derivatives and its Applications, North - Holland publishing Co., (Amsterdam), (1957).

